Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring
نویسندگان
چکیده
Maternal nutrition during the period of early organ development can modulate the offspring's ability to metabolise excess fat as young adults when exposed to an obesogenic environment. This study examined the hypothesis that exposing offspring to nutrient restriction coincident with early hepatogenesis would result in endocrine and metabolic adaptations that subsequently lead to increased ectopic lipid accumulation within the liver. Pregnant sheep were fed either 50 or 100% of total metabolisable energy requirements from 30 to 80 days gestation and 100% thereafter. At weaning, offspring were made obese, and at ~1 year of age livers were sampled. Lipid infiltration and molecular indices of gluconeogenesis, lipid metabolism and mitochondrial function were measured. Although hepatic triglyceride accumulation was not affected by obesity per se, it was nearly doubled in obese offspring born to nutrient-restricted mothers. This adaptation was accompanied by elevated gene expression for peroxisome proliferator-activated receptor γ (PPARG) and its co-activator PGC1α, which may be indicative of changes in the rate of hepatic fatty acid oxidation. In contrast, maternal diet had no influence on the stimulatory effect of obesity on gene expression for a range of proteins involved in glucose metabolism and energy balance including glucokinase, glucocorticoid receptors and uncoupling protein 2. Similarly, although gene expressions for the insulin and IGF1 receptors were suppressed by obesity they were not influenced by the prenatal nutritional environment. In conclusion, excess hepatic lipid accumulation with juvenile obesity is promoted by suboptimal nutrition coincident with early development of the fetal liver.
منابع مشابه
Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates.
Maternal obesity is thought to increase the offspring's risk of juvenile obesity and metabolic diseases; however, the mechanism(s) whereby excess maternal nutrition affects fetal development remain poorly understood. Here, we investigated in nonhuman primates the effect of chronic high-fat diet (HFD) on the development of fetal metabolic systems. We found that fetal offspring from both lean and...
متن کاملProtein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat.
Suboptimal developmental environments program offspring to lifelong metabolic problems. The aim of this study was to determine the impact of protein restriction in pregnancy on maternal liver lipid metabolism at 19 days of gestation (dG) and its effect on fetal brain development. Control (C) and restricted (R) mothers were fed with isocaloric diets containing 20 and 10% of casein. At 19 dG, mat...
متن کاملOxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity
Changes in the maternal nutritional environment during fetal development can influence offspring's metabolic risk in later life. Animal models have demonstrated that offspring of diet-induced obese dams develop metabolic complications, including nonalcoholic fatty liver disease. In this study we investigated the mechanisms in young offspring that lead to the development of nonalcoholic fatty li...
متن کاملA lipid-rich gestational diet predisposes offspring to nonalcoholic fatty liver disease: a potential sequence of events
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. It affects 20%-30% of the US population, and it is increasing worldwide. Recently, the role of lipid-rich maternal gestational nutrition in spurring the development of NAFLD among offspring has been indicated. Fetal predisposition to NAFLD involves numerous physiological reroutings that are initiated by...
متن کاملEvaluation of Serum Chemerin and Lipid accumulation product as Predictors of Non-Alcoholic Fatty Liver Disease in Simple Obese Egyptian Children
Background The increase in the prevalence of obesity worldwide has led to non-alcoholic fatty liver disease (NAFLD) becoming one of the most common causes of chronic liver disease. Chemerin is a novel adipokine which regulates adipogenesis which is also a marker of systemic and vascular inflammation. Lipid accumulation product (LAP) is associated with the presenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 141 شماره
صفحات -
تاریخ انتشار 2011